
* . £J .

AD-A245 893

Final Report: Active Knowledge Structures
for Natural Language Processing

Yorick Wilks, Michael Coombs,
Roger T. Hartley, Dihong Qiu DTIC

Computing Research Laboratory ELECTE
New Mexico State University 0 FE 0 7 199

Las Cruces, NM 88003 $ -

Abstract

This report is the final one for contract N00014-89-J-1558. We present a re-
working of the ideas in the ViewGen belief management system in terms of the
structures and reasoning mechanisms contained in the Conceptual Programming
system, CP which is based on Sowa's conceptual structures. Each of the con-
structs in ViewGen is shown in its CP form, and the major operations, ascription
and percolation are shown as CP operations.

1 ViewGen and CP

ViewGen is a dynamic beliefs management system. It generates multiple belief environments
from different points of view. The basic inference mechanism in ViewGen is default reasoning.
That is, unless there is evidence to the contrary, the agents are assumed to have the same
beliefs as the system. CP is a general knowledge representation system. It allows data,
as facts, and domain knowledge, as definitions, to be separated, but it does not allow for
nested beliefs. That is, CP only allows reasoning from one point of view, instead of allowing
multiple viewpoints, as ViewGen does.

An integrated reasoning system has been designed which combines CP and ViewGen, and
-d a prototype system has been implemented. Below is a discussion of the architecture of the

system, and the representation and organization of belief and knowledge. First, we present
an overview of the capabilities of Conceptual Programming and give a simple example of the
representations it uses.

92-03015
42 2 06 001 l flllll

na 13-- 22~-OO5-
(A

2 An overview of Conceptual Programming

The Conceptual Programming environment, CP, is an ongoing project at NMSU. The CP sys-

tem is a knowledge representation development environment within a graphical visualization

framework (for an overview, see [Pfeiffer and Hartley, in press], or [Hartley and Coombs, 90]).

In the CP system all knowledge is represented by graphs and operations (mappings) per-

formed over sets of those graphs. The CP representation presents an approach that uses a

constructive technique based on the actual graphs displayed and their graph transformation

operations (Hartley and Coombs, 891.
CP graphs are patterned after Sowa's conceptual structures ([Sowa et al, 90], [Sowa, 84])

using the operations defined fox conceptual structures on the graphs. Conceptual graphs,

as defined in Sowa's book, express declarative knowledge using concept, relation, and actor

nodes, and link the total context together through the edges. CP also expresses declarative

knowledge, but introduces a mechanism for expressing procedural knowledge through ex-

tended features for actors, both syntactically and semantically, where they perform more like

"functional relations" ([Hartley and Pfeiffer, 91], [Pfeiffer and Hartley, 89], [Eshner and Hartley, 881).

One of our extension to Sowa's conceptual graph theory is the addition of an "overlay" level.

This level allows for both feasibility-runtime domain support and spatio-temporal domain

support. Within the feasibility-runtime domain, heuristics and constraints are introduced

in the conceptual structures framework; whereas, within the spatio-temporal domain an

ontology for objects, events, states and processes is provided within this same framework.

A simple example is the conceptual graph for the sentence The girl took off a blue coat.

The graph is:

[TAKE-OFF] -
(AGT)-> [GIRL:#]
(PTNT) -> [COAT] -> (ATTR) -> [WET].

Details of the syntax of the linear representation of conceptual graphs can be found in

Sowa's book (op cit, but briefly, concept labels are enclosed in square brackets, and relation

labels in parentheses. The symbol '#' indicates a definite individual (corresponding to 'the'

in the sentence). The arrows indicate the direction of the relation. Here the act 'take-off'

has two conceptual cases, and agent (AGT) and a patient (PTNT). Wetness is an attribute

(ATTR) of the coat.
An example of a problem solving system built on top of the CP environment has been

developed here at NMSU. In this system, the process of solving a problem is one of construct-

ing a CP graph, called a model, out of graphs that can be thought of as data, definitions

and previously created models. Thus, at all times a partially completed model holds rele- [H

vant data. The graph operations are used to create and update the actual models. Because

solutions are found by generating models during the reasoning process, the general approach

has been termed "Model Generative Reasoning, or MGR". & ----.................

"\ "Avi\ats tid
2 Dist Special

P-I t

3 CP Representation

3.1 Basis of the representation

CP is a knowledge representation environment visualized and operated on through graphs.
These graphs are implementations of Sowa's conceptual structures ([Sowa et al, 90], [Sowa, 841)
and retain many of the features of conceptual graph theory. Although there exists a mapping
from conceptual graphs to formulae in first-order predicate calculus, FOPC, the operations
used in the CP system take advantage of the graphical representation. We therefore study
the structure and operations on the graphs using graph theory [Harary, 69] instead of FOPC.

A conceptual structure CS is defined as a connected multilabeled bipartite oriented graph
[Eshner and Pfeiffer, 90]. The two colors of nodes in a conceptual structure are called concept
and relation. Each label in a concept node consists of two fields, the type field and the
referent field. The type field is an element of the set of concepts defined in a type lattice
([Eshner and Pfeiffer, 90], [Pfeiffer and Hartley, 90], [Sowa, 84]). The referent field contains
the individual specialization (if any) for the type field. Each label in a relation node consist
of the single relation field. This relation field depicts the relationship between the adjoining
concept nodes within the conceptual structure.

3.2 Extensions to basic representation

Sowa has shown how unknown objects (nodes with no individual field) can be computed
by an actor node that corresponds to a function in standard logics. This actor can best be
thought of as a "functional relation", where there is a semantics (performed by the procedure)
being represented graphically between two objects. Actor nodes of this kind are diamond-
shaped boxes connected to concept nodes with dashed lines. In our extensions to conceptual
graph theory, these actors are given the capability of computing 1) quantitative constraints
in a Prolog fashion (i.e. of doing constraint propagation through a system of values and
variables), and 2) qualitative constraints that propagate among moments in time when acts
occur, and locations of objects in space. This inspired the overlays in CP. Overlays are seen
as a new level of graphs that live on top of the basic graph definitions. The analogy here is
of overhead slides being laid on top of one another to produce a complete diagram.

Within this level, there are actually two sublevels, feauibility-runtime domain, and spatio-
temporal domain. The feasibility-runtime sublevel uses quantitative actors as described
above. The spatio-temporal level uses qualitative actors. This level requires a syntactic
extension to conceptual graphs in order that the diagrams not become too confused and
thus lose their force.

The feasibility-runtime sublevel provides CP a mechanism for a system of constraints.
The feasibility overlay works as a "heuristic" at a 'compile time' level of computation as
opposed to a 'runtime' level. The graphs are created as overlays to a particular defini-
tional graph. Each overlay contains at least one or more actors. These actors have a
functional procedure associated with them and this function is executed when the actor is
evaluated during the join operation. Runtime overlays work as "constraints" that imple-

3

ment Sowa's original actors in conceptual graphs with two additions: 1) each actor may
behave like a formal constraint on a state or concept referent as well as a function, and
2) constraint actors may take as input a state as well as a single concept referent. Like
feasibility heuristics, runtime constraints focus on the quantitative functional relations. For
feasibility-runtime actors these inputs and outputs may be any relevant concept or relation
in the graph [Pfeiffer and Hartley, 89].

Within the spatio-temporal sublevel, the main aim is at determining what things can be
inputs and outputs to spatio-temporal actors. Three concept tyoes are focused on: objects,
acts and properties. The relationships between these three entities types are the basic inputs
and outputs to the spatio-temporal actors ([Hartley and Pfeiffer, 911, [Eshner and Hartley, 881).
These relationships can be made explicit by interpreting the constraints expressed by the
actor and its connections (inputs and outputs, roughly speaking) just as a rule in a rule-
based system can be thought of as an implicit relation between its left and right-hand sides.
'Firing' the rule computes the relation.

Rules in CP are represented at this spatio-temporal level. The actors sole job is to act as
confluence points for the knowledge structures that have to be related. All of the actors are
constraint-like in that they can operate forwards or backwards. However, temporal actors
are often regarded as operating forwards, in the direction of time. Thus, inputs to an actor
are pre-conditions for the actor's firing, and outputs are post-conditions. In the temporal
domain, inputs are partial states and schematics, since these are exactly what is expected to
change in time. Each temporal actor also has an act (really a process) as input. With the
crucial part of the whole idea within the temporal relationships being how the act relates
to the inputs and outputs. The input and output relations are represented by a time chart
[Hartley, in press]. This time chart is similar in use and meaning to the time maps of Dean
and McDermott [Dean and McDermott, 87] and have correspondence to Allen's relations
[Allen, 85].

We can apply the same notions to create spatial actors corresponding to the temporal
actors just discussed. Where the temporal overlay placed partial states or schematics in
temporal relationship, the spatial one places partial processes or chronicles in spatial re-
lationships. Each spatial rule will be represented by an actor corresponding to an object.
Whereas the temporal actors are directional, according to the forward flow of time, there is
no such constraint on spatial actors. Through the use of spatial and temporal actors, CP is
able to operate over space and time.

4 The architecture of the integrated system

The architecture of the integrated system contains two components (see Figure 1). One
component corresponds to the reasoning engine based on CP, and the other corresponds to
ViewGen. The basic strategy is to use Viewgen as a "bookkeeping" system, rather like the
ATMS, to maintain the current state of belief space and to generate the new nested belief
environment according to need. The problem solver, MGR, can be used in any belief environ-
ment to generate new assertions or hypotheses from old ones. The generated hypotheses are

4

beliefs in that environment. These beliefs can be propagated by ascription and percolation,
the operations of ViewGen.

There are three kinds of inference in the current system: ascription, percolation, abduc-
tion. Each of them is an independent inference engine. All of them operate on nested belief
environments. The initial belief environment can be built by the user or by the inference
engine. The function of the ascription inference engine is to build the initial or new nested
belief environments. The abduction inference engine is a problem solver; it also can be used
in building the initial belief environments. The percolation inference engine propagates the
hypotheses generated by abductive inference from the inside of a nested belief environment
to the outside. In the the current version of ViewGen, there is no percolation inference,
so this is an addition. In the future, we can build other inference engines as well, such as
deduction or inheritance inference. In principle any problem solving or inference technique
can be incorporated into the ViewGen superstructure as needed.

5 The representation of belief and knowledge

In Viewgen, a belief is represented by the language known as FOLSE. (First Order Logic with
Sets and Environments) [Ballim, 86]. In the integrated system, both belief and knowledge are
represented through Conceptual Programming (CP) structures [Hartley and Coombs, 88].
Following, we will discuss how to use conceptual graphs in belief ascription and reasoning.

5.1 The representation of beliefs in CP
There are three kinds of objects in ViewGen: simple belief, environment, and atypical belief.
We will discuss each briefly.

5.1.1 Simple belief

A simple belief is represented by first-order logic predicates in FOLSE. Because there is a
simple mapping from first-order to conceptual graph [Sowa, 84], it is easy to represent a
simple belief by a conceptual graph. For example, the belief that the earth is round can be
expressed as:

[EARTH) -> (CHRC) -> (SHAPE] -> (ATTR) > (ROUND)

5.1.2 Environment

In order to express the environments of ViewGen , we introduce the "environment" concept
type. The type label is ENVIRONMENT, and its referents are one or more graphs. It is one
kind of "context", or embedded graph of which GRAPH, PROPOSITION, and SITUATION
are others. They are all subtypes of universal type T (top). For example, we can represent
"John believes the earth is flat" as following:

5

[ENVIRONMENT:
[PERSON: John] <- (EXPR) <- [BELIEVE] -> (PTNT) -

-> rPROPOsITION: [EARTH] -> (ATTR) -> [FLAT]]]

Here, the proposition represents a simple belief. In fact, we can express nested beliefs
too. Following is the representation of belief "The system believes the earth is round and
believes John believes the earth is flat".

[[SYSTEM] -
(BELIEVE-ABOUT) -> [EARTH) -> (STMT) -> HEARTH -> (ATTR) -> [ROUND))

(BELIEVE-OF) -> [PERSON: John] -
(BELIEVE-ABOUT)-

-> [EARTH] -> (STMT) -> [[EARTH] -> (ATTR) -> [FLAT]]]

Here, we have distinguished the conceptual relations "BELIEVE-ABOUT" and "BELIEVE-
OF". This is because environments consist of two basic types, viewpoints and topics. See
the ViewGen papers (op cit) for detailed discussion. From the above description, we can get
the general form of environment:

[ENVIRONMENT:
[SYSTEM] -> (BELIEVE-ABOUT) -> [TOPICS1) -> (STMT)-

[PROP: {G11, G12, ...A
-> (BELIEVE-OF) -> [AGENT1 -> (BELIEVE-ABOUT) ->

ETOPICS2] -> (STMT) -> [PROP: {21, G22, ...A

-> (BELIEVE-OF) -> [AGENT13 -> (BELIEVE-OF)-
... -> [AGENT NI -> (BELIEVE-ABOUT] -> [TOPICS N)-

-> (STMT) -> [PROP: {GNI, Gn2, ...}

5.1.3 Atypical belief

The atypical belief in ViewGen is represented by lambda-expression and lambda formulas.
Because there is a lambda expression mechanism in conceptual graphs, again the correspon-
dence is clear. For example, "L's phone number" can be written as:

(LAMBDA L) [PERSON:L -> (POSS) -> [PHONE) -> (ATiR) -> ENUMBER:#
OR

PHONE-NUMBER-OF L =
(LAMBDA L) (PERSON:*L) -> (POSS) -> [PHONE) -> (ATTR) ,>

[NUMBER:*].

The -functions in ViewGen consist of one basic evaluation relation and three complex
evaluations: the basic evaluation "Val-for" expresses the agent's beliefs about the value
of A-expression; the complex relation "Comp(X,Y)" expresses the fact that there are two

6

competing evaluation relations X and Y for the expression; "Spec(X,Y)" expresses that
the evaluations derived from the evaluation relation X are considered "better" by those
agents involved in X than the evaluations derived from Y. In addition , it indicates that
the agents involved in Y do not believe the agents involved in X to have such "better"
values; "SpecK(X,Y)" which is the same as "Spec(XY)" except that it states that the
agents involved in Y believe that the agents involved in X have a better evaluation, although
they don't know the actual evaluation). We can define the above evaluation relations in a
similar fashion to the above example.

We can then give a representation for a specialist belief:
Assume there is a lambda-expression "(LAMBDA L) immed-type-ofL" and Z = ((LAMBDA

L) immed-type-of L) (thalassemia), we can describe the relevant lambda formula as:

([[SPECIALIST] -> (VAL-FOR) -> (HYPOCHROlIC]]-
-> (SPECK) ->

£ [[HIGH-MED-INFORM-PERSON] -> (VAL-FOR) -> [GENETIC-DISORDER))-
-> (SPECK) ->

([AVG-MED-INFORM-PERSON] -> (VAL-FOR) -> [DISEASE]]-
3

-> (SPEC) ->

[[AVG-EDUCATED-PERSON] -> (VAL-FOR) -> [GREEK-PROVINCE3 -
-> (SPEC) ->

([AVG-PERSON] -> (VAL-FOR) -> CGREEK-PLCE)3

This expresses the various levels of specialized knowledge of thalassemia, depending on
the type of person. Medically trained people believe it to be a genetic disorder, people with
some medical knowledge believe it to be a disease, and everybody else thinks it is something
in Greece.

5.2 Belief Ascription

The detailed strategies of belief ascription have been discussed by Wilks and Ballim in their
book "Artificial Believers" [Wilks and Balim, 91]. Here, we only discuss how to ascribe
belief by using conceptual graphs, that is, to implement ViewGen structures in conceptual
graphs. Generally, there are three main tasks in ViewGen: setting up an initial environment,
transforming the environment, and pushing one environment inside another.

5.2.1 Generating the initial environment

In order to set up the initial environment , there are two subtasks we need to execute: to
decompose the goal environment and match the existing environment.

7

- - .i fi ii I i i I Ii

The decomposition entails generating relevant degenerate environments and arranging
them according in preferred order. After decomposing, we have:

Gf -- Gf1 ,Gf 2 ,...,Gfi

By matching the above Gfk(k =1,... ,i) with the environment description, we can find
the corresponding content of each degenerate environment and set up the initial environment.
Here, by using conceptual graphs to represent environments, the change in criteria only
changes the number and the order of subgraphs Gfk, it has little effect on the whole system.

5.2.2 Transformation

As we have discussed above, ViewGen uses lambda expressions and lambda formulae to
express an atypical belief. Generally, ascribing a A-formula to an agent requires altering the
formula, which involves changing the function table for the formula. In their book, Wilks and
BaUim have discussed the transformation of A-formula and give a recursive transformation
function. However, because there are only four basic evaluation relations defined in A-
formula, the transformation function is restricted in its use. Because CP has a mechanism
for defining different evaluation relations, we can generalize the transformation function by
using the power of conceptual graphs.

By checking the transformation condition and the agent mentioned, we can transform
the basic belief function. However, complex functions need a special method of transforma-
tion. Wils and Ballim have given the transformation method for some complex evaluation
relations. In conceptual graphs it is possible to define new relations, and an associated trans-
formation method. When ascribing a complex relation, the system decides whether or not
the relation is defined by the user. If it is, the system finds the corresponding transforming
method and changes the relation. Otherwise, the system transforms the relation in pre-set
ways.

5.2.3 Pushing one environment into another

After we have set up the initial environments and transformed them regarding to the agents,
now the task is to push the content of degenerate environments and produce the final envi-
ronment. The main problem in pushing a belief into an environment is finding the counter
evidence, that is, finding whether inconsistencies between source environment and target
environment exist. Ballim adopted a method which is like de Kleer's ATMS methodology.
By using justification and assumption sets and keeping a record of propositions that are
inconsistent with each other, the system can determine whether a new proposition is valid
by checking that there are no inconsistent pairs in the assumption set.

Using the above method, we can find the inconsistency between "the earth is flat" and
"the earth is not flat". But, for two propositions that have no surface inconsistency, such
as "the earth is flat" and "the earth is round" , it is necessary to identify the mutually
exclusive properties between flat and round in order to find the inconsistency. By using
the canonicality of conceptual graphs and the knowledge of the conformity of individuals to

8

types in conceptual graph, inconsistency between propositions can be found. In addition, we
plan to use CP's constraint actor mechanisms to perform this sorts of consistency checks.

5.3 A Conceptual Graph Based Language for Belief Ascription
and Reasoning

In [Wilks and Balim, 91], Wilks and Balim define two kinds of language: Lint and L .
The former is one kind of three-value logic, and the latter is a representation method ,
incorporating the notion of viewpoints. Because the two languages are different, when we
build a system for both belief ascription and reasoning, confusion is possible and they can
be difficult to implement. Here, we try to formally define a unified conceptual graph based
language for both belief ascription and belief reasoning.

Because Liu, Let, and FOLSE (the language used by Viewgen) are based on first-order
logic, and there is simple corresponding relation between first-order logic and conceptual
graph, we can define a unified language based on conceptual graphs.

5.3.1 Representation language BRL

Definition: If u is an atomic conceptual graph, that is, u has no nested contexts, - is the
(two-valued) negative relation, and 0 is the unknown relation, which is a monadic operator
that provides a mapping from three-value logic to two-value logic, then:

1. -u, Cu, -' Cu are atomic wffs of BRL.

2. If a is an agent, and v is an atomic wif as in 1, then [a] -, (Bel) -+ [v] is an atomic
belief wif of BRL.

3. If a is an agent and u is a belief wif, then [a] -+ (Bel) - [u] is a belief wif of BRL,
and if v is also a wif of BRL, then [a] -+ (Bel) -- [{u,v}] is a belief wif of BRL.

Here, the form [a] -+ (Bel) -+ [u] is a contraction of the description:

[a] .- (EXPR) +- [BELIEVE] -+ (PTNT) -+ [PROPOSITION: u]

By this definition, we have defined a language for viewpoints.
As in language Let [Baim, 86], we can define contradictoriness and contrariness between

viewpoints in this language.
Definition: p, q are atomic conceptual graphs. If p is not of the form 0q nor of the form

-,Oq (p q) then p and -p are said to be contradictory across viewpoints.
Definition: p, q are atomic conceptual graphs. If p is of the form Oq or of the form -,0q,

then p and -'p are said to be contrary across viewpoints.
Definition: U is a set of belief wffs in BRL. If the agent in the outermost nested context is

System, and th. System believes all the members of U, then U is known as an environment.
Definition: U is environment. P is set of atomic wffs in the same nested context. If no p

and -,p are both in P, then environment U is consistent.

9

Definition: U, V are environments, p,q are atomic wffs in them respectively. If U,V are
consistent, and no contradictory between p,q, then U, V are consistent under ascription,
denoted by A(U,V).

5.3.2 Belief Ascription

Before discussing the detail mechanism of belief ascription, we will define the basic idea of
ascription first.

Basic Ascription rule:
Let u, w are atomic belief wffs as following

[a] - (Bel) -~(p]

[L1 -- (Bel)-. [q]

If U,W are consistent under ascription (U contains p, and W contains q, and p and q are
consistent), then

(a] -+ (Bel)-- [p1, [--* (Bel) - [q],A(U, W)

[a] -- (Eel) -. [] -. (Bel) -. [{p, q}]

This is the simple rule for belief ascription. In fact, ascription is a more complex operation
because of the checks for consistency and handling of special knowledge. For a detailed
discussion see [Wilks and Ballim, 911.

5.3.3 Belief percolation

Definition: U,V are two belief environments, pi are atomic wffs in U, i = ,...,m, p are
atomic wffs in V,j = 1,..., 1. U,V are said to be assertively consistent if for any i and j, pi
does not contradict any Pi,.

Assume U,V are two belief environments, o,.. , a. 1 are the agents in U, and ao, ... o4-I,
Saare the agents in V. pi are atomic wffs in the innermost context of U,i = 1,...,mp

are atomic wffs in the innermost context of V,j = 1,...,l. If there is aJ, in the innermost
context of V which is not of the form Op, nor of the form -0Op, -,'j is not in {pi}, and 14t is
assertively consistent with {pi}, then we can percolate j4 as follows:

U: [System] - (Bel) - ... [c4, 1] -+

[Topic] -+ (STMT) -. [Pxb,. . . ,pwjl

V: [system] -. (Bel) - -... [a 1

[Topic] - (STMT) -. [...,p

W: [System] -+ (Bel) -,... [,..- --.

[Topic] --+ (STMT) -- {P,,... ,.,

10

6 The organization of beliefs and knowledge

In the prototype system, we used the knowledge structures of Viewgen and CP. We use a
'simple two-level table to represent the nested belief environments of agents. Each element in
the first level table is a pair (Agents content). Agents is a list of agents. The list represents
the nested relation among the agents. For example, (System Mary Susan) represents "System
BELIEVE-OF Mary BELIEVE-OF Susan BELIEVE-ABOUT..." Content is list of pairs.
For each pair, the first element represents the topic, the second element is the real beliefs
under the topic. Those beliefs are divided into three categories: facts (assertions assumed
to be true), definitions (domain knowledge), and models (hypotheses derived from facts and
definitions). Thus, the belief environment looks like:

C(C system) ((Tl)((facts (fi ...))
(definitions (dl...))
(models (ml...))

)

(T2)((facts (f2...))
(definitions (d2...))
(models (W2...))

)

((system agenti) ((TI) ((facts (fli...))
(definitions (dli...))
(models (all...))

)

))

In the prototype system, all beliefs, including facts, definitions, and models are represented
by CP graphs. We only put the name of the graph in the two-level table. All of these graphs
are stored in a structured knowledge base so that ascription and percolation inferences can
be made as needed.

7 The Implementation of Ascription and Percolation

Here we briefly sketch the mechanisms that implement the two main ViewGen operations.
They are both based on the relevant CP operations, making the integration of ViewGen and
CP even closer than simply using CP's style of representation.

7.1 The implementation of Ascription

As described above, ascription is a copy operation with restrictions. Since each nested
environment in ViewGen is internally consistent (much like an ATMS environment), then

11

any new assertion must also be assertively consistent with the set, as described above. CP
can check for canonicality which is essentially type consistency through the maximal join
operation. A new assertion is thus joined to the set of assertions in an environment. If
the join succeeds, then the assertion is added. If the join fails (either through some type
incompatibility, or through a negation check) then the assertion is not added. Further,
more semantic checks, such as necessary with specialized knowledge can be made through
CP's feasibility constraints (see [Pfeiffer and Hartley, in press]) but lack of space prevents
any further discussion.

7.2 The implementation of percolation

Percolation is the dual of ascription in that it promotes assertions from inner to outer nested
environments. The dual of maximal join in CP is maximal project. It also preserves canoni-
cality, but in addition is truth preserving. Thus percolation is guaranteed to only promote
true assertions, whereas ascription can produce assertions that are only abductively true.
Again constraints can modify percolation just is they can be used with ascription.

For a simple example of these mechanisms, refer to Figure 2. Here the system is diag-
nosing a disease presented by a patient Tp. The system is assumed to know facts s-factl
and slfact2, and observes symptoms s-obsl, s.obs2 and s-obs3. Beacuse this is insufficient
to diagnose the disease, the system searches for expert advice, and finds that two doctors,
A and B, can diagnose tho disease, but at the moment the observations needed for diag-
nosis are unknown. The system believes that Doctor A knows A-factl and A-fact2, and
believes hypotheses A-hypl and Ahyp2 about the disease in question. Correspondingly, the
system holds beliefs about Doctor B's beliefs, B-factl and B.hypl. Following is the initial
environment, described in BRL:

[SYSTEM] -- [Tp] -- (STMT)-
-. [{s_.factl, sact2, .. obsl, s-obs2, s.obs3}]
[SYSTEM] +- (BEL) -- tDrAl -- (BEL)-
- [Tp] -- (STMT) --+ [({Afactl, A.f act2, A-hypl, AJhyp2}]

[SYSTEM] 4- (BEL) +- [DrA] +- (BEL)-
[DrB] -+ (STMT) -- [{B-factl, BJhypl}J

Through ascription inference we can push siactl, slfact2, s-obsl, s.obs2, s-obs3 into Dr A's
environment. Suppose now that s.Iact2 is insonsistent with A-factl and A.fact2. A'a nested
belief environment is then:

[SYSTEM] +- [DrA] -- (BEL)-

[Tp] --+ (STMT) -- [{&factl, a-obs 1, aobs2, s.obs3, A.factl, A-f act2, A.hypl, A.hyp2}]

Similarly, for Dr B, if siactl is inconsistent with Bfactl, we get:

[SYSTEM] 4 (BEL) 4 [DrA] 4- (BEL)-
[DrB] - (STMT) -- [{s..fact2, s.obs , s..obs2, ._obs3, B.f actl, B-hypl}]

12

By using abduction, Dr A believes that A.hypl is a possible explanation for these obser-
vations. Dr B believes that B-hypl is an explanation. Suppose that A-hypl and B-hypl
are not inconsistent. These hypotheses may then percolate to the system's environment,
resulting in:

[SYSTEM] .- (BEL)[Tp] -- (STMT)-
- ({s..factl, s-f act2, s.obs1, q-obs2, s.obs3, AJhypl, BJhypl}]

Thus the system can use A-hypl and B.hypl as alternative diagnoses for the patient's disease.

8 Conclus.on

We have shown how the essential structures in ViewGen, i.e. nested belief environments,
can be represented in CP's graph language. In addition, the major operations for reasoning
about nested beliefs can be implemented with CP's graph operations.

We have implemented a prototype of the integrated system that extends the single-
environment type of reasoning found in MGR to ViewGen's multiple environments. This
prototype, that shows how modem military intelligence might have been used in the English
civil war ([Coombs and Hartley, 88], is implemented in CommonLisp, and runs on UNIX
workstations. In the partially fictitious scenario, the system reasons over the King's beliefs
about his opponent's actions, and vice versa.

References

[Allen, 85] J. Allen, "Maintaining Knowledge about Temporal Intervals," Communications
of the Association of Computing Machinery, 26(11), pp. 832-843, 1985.

[Ballim, 861 Ballim,A. 1986, A proposed language for representing and reasoning with nested
beliefs, MCS-86-77, CRL, New Mexico State University.

[Coombs and Hartley, 88] Coombs,M.J. and iartleyR.T. 1988, Design a software environ-
ment for tactical situation development, MCCS-88-144, CRL, New Mexico State Uni-
versity.

[Dean and McDermott, 871 T.L. Dean, and D.V. McDermott, "Temporal data base man-
agement," Artificial Intelligence, 32, pp. 1-55, 1987.

[Eshner and Hartley, 881 D.P. Eshner, and R.T. Hartley, "Conceptual Programming with
Constraints," Proc. of the Third Annual Workshop on Conceptual Structures, Minneapo-
lis, pp. 3.1.2-1 - 3.1.2-6, 1988.

[Eshner and Pfeiffer, 90] D.P. Eshner, and H.D. Pfeiffer, "A Graph Theoretic Basis
For Problem Solving," Fifth Rocky Mountain Conference On Artificial Intelligence
(RMCAI-90), Las Cruces, pp. 161-166, 1990.

13

[Harary, 69] F. Harary, Graph Theory, Reading, MA: Addison-Wesley, 1969.

[Hartley and Coombs, 88] Hartley, R.T. and Coombs,M.J. 1988, Conceptual Programming:
Foundations of problem-solving, MCCS-88-129.

[Hartley and Coombs, 89] R.T. Hartley, and M.J. Coombs, "Reasoning with Graph Oper-
ations," Proceedings of Workshop on Formal aspects of Semantic Networks, J.F. Sowa
(Ed), Formal Aspects of Semantic Networks, New York, NY: Addison-Wesley, 1989.

[Hartley and Coombs, 90] R.T. Hartley, and M.J. Coombs, "Conceptual programming:
Foundations of problem solving," J.F. Sowa, N.Y. Foo, and A.S. Rao (Eds), Conceptual
Graphs for Knowledge Systems, New York, NY: Addison-Wesley, 1990.

[Hartley, in press] R.T. Hartley, "A Uniform Representation for Time and Space and their
Mutual Constraints," special edition on Semantic Networks in Artificial Intelligence (ed.
F. Lehmann), Computers and Mathematics with Applications, in press.

[Pfeiffer and Hartley, 89] H.D. Pfeiffer, and R.T. Hartley, "Semantic additions to Concep-
tual Programming," Proc. of the Fourth Annual Workshop on Conceptual Structures,
Detroit, pp. 6.07-1 - 6.07-8, 1989.

[Pfeiffer and Hartley, 90] H.D. Pfeiffer, and R.T. Hartley, "Additions for SET Representa-
tion and Processing to Conceptual Programming," Proc. of the Fifth Annual Workshop
on Conceptual Structures, Boston&Stockholm, pp. 131-140, 1990.

[Hartley and Pfeiffer, 91] H.D. Pfeiffer, and R.T. Hartley, "The Conceptual Programming
Environment, CP: Time, Space and Heuristic Constraints," Proc. of the Sizth Annual
Workshop on Conceptual Graphs, Binghamton, pp. 331-342, 1991.

[Pfeiffer and Hartley, in press] H.D. Pfeiffer, and R.T. Hartley, "The Conceptual Program-
ming Environment, CP," J. Nagle, T. Nagle, L. Gerholz, and P. Eklund (Eds), Current
Research using Conceptual Structures, Heidelberg, W. Germany: Springer-Verlag, in
press.

[Qiu, 91] Qiu,D. 1991, Using conceptual graph as a unified belief representation approach
in ViewGen system, ICYCS'91, Beijing, China.

(Sowa, 84] J.F. Sowa, Conceptual Structures, Reading, MA: Addison Wesley, 1984.

[Sowa et al, 90] J.F. Sowa, N.Y. Foo, and A.S. Rao, Conceptual Graphs for Knowledge Sys-
tems, New York, NY: Addison Wesley, 1990.

(Wilks and Ballim, 911 Wilks,Y. and Ballim,A. 1991, Artificial Believers, Lawrence A Erl-
baum Associates, Hillsdale, NJ, 1991.

[Wilks and Hartley, 90] Wilks,Y. and HartleyR.T. 1990, Belief ascription and model gener-
ative reasoning: joining two paradigms to a robust parser of messages. MCCS-90-180,
New Mexico State University.

14

5I
w

IR
a .

41-O__

(-

r "~
I 1 Ea

-
I I

-- - ---- ---- ----

SS I Ia~

W I E.0 0

v-4-

C6~~ ~ ~ comWumc
-C IM 0

CA'

U) N n W) 1 C ,0..0
4 ~.0 AC

.0
-o) to

-l
U2C

4 Cz ;0% =* <0.

'n lI c I ta 0

